碳纤维:全面了解

碳纤维:全面了解

碳纤维具有高抗拉强度,而且非常轻且非常稳定。碳晶体以链状结合在一起,形成一种非常坚固的材料,与同等重量的钢相比,其强度是钢的5倍。碳纤维直径非常小,范围为5-10微米。由于其出色的机械性能,碳纤维的生产和消费最近有所增长。碳纤维的高制造成本与其在拉伸和压缩方面的高强度以及高抗腐蚀、蠕变和疲劳性、低重量和高性能相平衡。

编织碳纤维织物用于各种应用,如船舶、体育用品、国防等。两种最常见的编织样式是“平纹”和“斜纹”。两者在每个方向上都有等量的碳纤维,并且它们的强度非常相似。其他样式包括缎纹、单向、双轴。或者,可以将织物添加到硬化的树脂系统(如环氧树脂)中,这样就形成了结构复合部件。由于树脂系统是坚固的低密度材料,因此复合部件同时也非常坚固且重量轻。

碳纤维制造的主要原料是聚丙烯腈(PAN),其次是沥青,极少量的碳纤维来自人造丝。

碳纤维通常根据其特性所属的模量或强度带进行分组。这些带通常称为:高强度、中模量、高模量和超高模量等。这些碳纤维质量的参考不是很清楚,因为生产不同质量的不同公司可能会以不同的方式考虑或评估某种质量。PAN纤维密度范围从1.75 g/cm 3到1.90 g/cm 3。PAN拉伸强度可高达1000Ksi。

碳历史

碳纤维于1958年在俄亥俄州克利夫兰附近首次发明,但该工艺效率低下,因为最终纤维中只有20%是碳。后来开发了另一种使用PAN作为前体的工艺,最终纤维的碳含量为55%。但随着1963年英国研究中心开发的一种新制造工艺的出现,碳纤维的高潜在强度得以实现,碳纤维制造业开始发展。20世纪70年代,对替代原材料的研究导致碳纤维含有85%的碳,这次是用沥青制成的。

现代碳纤维含量超过90%,接近100%。如今,生产最高品质碳纤维的领先公司来自日本,在世界各地拥有许多碳纱制造基地。早年,碳复合材料非常昂贵,因此很少使用,而且大多只用于航空航天应用。然而,随着时间的推移,碳纤维在更多应用中变得价格合理,制造技术也得到了改进,所有这些都导致消费量增加(并且不断增长)。

碳结构

碳纤维的原子结构与石墨相似,由六边形排列的碳原子层组成。根据前体和制造工艺,层可能是乱层结构、石墨结构或混合结构。在石墨结构中,薄片以规则方式平行堆叠。平面之间的结合较弱,使石墨具有柔软的特性。由PAN制成的碳纤维是乱层的,可以提供更高的强度,而沥青可以提供更高的模量。

制造过程

PAN碳纤维是在惰性气体中以高于982°C的温度对前体纤维进行热解而制成的。制造碳的最常见前体材料是聚丙烯腈(PAN),占所有碳纤维产量的90%。该工艺包括以下五个步骤:

  1. 纺丝(和聚合):PAN与其他成分混合,纺成纤维,然后进行清洗和拉伸。成品纤维的质量很大程度上取决于原丝的质量。
  2. 稳定化(或氧化):在约200°C-400°C的温度下进行化学变化以稳定粘合。
  3. 碳化:将稳定纤维加热至极高温度(~1000°C),以去除氢、氧、氮和其他非碳元素,形成紧密结合的碳晶体。为了制造更硬(高模量)的纤维,热解过程需要持续更长时间,并在更高的温度下进行(高达3000°C),从而形成直径较小的圆形纤维。模量较高的纤维更昂贵且更脆。因此,在进一步加工(编织、缠绕等)时应更加小心。
  4. 表面处理:对氧化纤维进行表面处理,以提高结合性能。
  5. 上浆:纤维经过涂层处理并卷绕到线轴上。

主要优势

与其他材料相比,碳纤维具有许多优势。主要优势特征包括:

  • 高强度
  • 重量轻
  • 耐腐蚀
  • 优异的抗蠕变性
  • 良好的导热性和导电性
  • 与大多数树脂系统兼容
  • 尺寸稳定性极高
  • 低热膨胀系数
  • X射线渗透性

碳应用

碳纤维在许多应用中都受到青睐,因为它的性能优于许多其他纤维材料。它主要用于高品质产品,以取代玻璃纤维、木材或合金,因为它重量更轻、刚度更高、抗疲劳性更好。此外,随着人们对环境问题的关注度不断提高,碳纤维的使用量也在增长。例如,碳纤维可以减轻车辆重量,从而降低燃料消耗。同时,复合材料产品制造的碳足迹比金属(产品)制造少得多,因此对环境有额外的(不太明显的)积极影响。

碳制成品的例子有:

  • 体育用品:冲浪板、自行车、钓鱼竿、网球拍、曲棍球棍、跑鞋。
  • 汽车-赛车:车身部件(如车门、引擎盖等)、结构部件(如底盘)、机械部件(如传动轴)和防护部件(如头盔、减震器)。
  • 海洋:船舶、游艇和轮船、结构和非结构部件的制造。
  • 国防和航空航天:飞机、车辆、装甲等。
  • 乐器:吉他(及其他弦乐器)、鼓以及管乐器。
  • 风电行业:涡轮叶片。
  • 电子领域:印刷电路、家用电子设备、个人电脑、相机机身。
  • 医疗科学:轮椅、人造身体部件、X射线透明手术台。
  • 建筑业:桥梁建设、临海及恶劣气候条件下的建筑、旧建筑修复。
  • 环境与能源领域:燃料电池、石油工业。

由于碳纤维具有优异的性能,预计碳纤维市场将大幅增长。对于任何应用,为了用碳纤维生产出高质量的产品,需要高超的技能和技术设备。

(67)
材料号的头像材料号特邀作者

猜您喜欢

  • 你能用热弯曲碳纤维吗?

    碳纤维主要用环氧树脂固定在其位置。如果它没有完全硬化,它可能会弯曲。如果不加热固化,最多在生产后 2 周,具体取决于天气(温度)。极少数制造商使用可以重新加热和弯曲的热塑性塑料。

    2022-11-09
    8.8K00
  • 能把环氧树脂放在冰箱里吗(寒冷对树脂的影响)

    如果您使用的是水性产品,例如环氧树脂,则不建议这样做。水性产品在冷冻时会变得更粘稠。这会使它更难使用,并且在应用时可能无法正确固化。一些环氧树脂适合在低温下使用,但前提是它们以正确的比例混合并在特定时间范围内使用(它们的包装会告诉您)。 目录 我可以冷冻环氧树脂吗? 如果环氧树脂变得太冷会怎样? 你能把固化的树脂放在冰箱里吗? 冷冻树脂会使它固化得更快吗? …

    2023-01-14
    5.4K00
  • 如何硬化粘性环氧树脂(其他类似问题)

    可以理解的是,当您的树脂项目变得粘稠时,您很容易气馁。当您的树脂不能正确固化时,您会采取什么措施?我们为您准备了一些硬化粘性树脂的应对方法。 未固化树脂的条件 条件1:粘性树脂 您应该知道环氧树脂在达到固态之前会从液态通过凝胶状态。 粘性树脂是指树脂未完全固化(凝胶状态)且表面仍然发粘的情况。您可能没有正确测量您的份量,将它们彻底混合以产生必要的化…

    2023-08-05
    6.2K00
  • 氰基丙烯酸酯可以用于医疗应用吗?

    是的,某些类型的氰基丙烯酸酯经 FDA 批准可用于医疗用途。氰基丙烯酸酯的湿气固化特性导致其在医疗用途中的早期流行,其中基于组织的湿气对固化过程无效,实际上有助于它。最初用于兽医应用和军事急救,现在广泛用作医用粘合剂。医用级氰基丙烯酸酯局部皮肤粘合剂可有效用于闭合伤口,称为液体绷带。它还广泛用于骨科和牙科应用。氰基丙烯酸酯在医疗行业的新应用不断被发现,其中一…

    2022-12-19
    5.9K00
  • 我需要密封木材填料吗?

    木材填料是填补木材缝隙的好方法,但很难知道何时需要密封它。你能密封木材填料吗?我需要在木材填料上打底漆吗?密封木质腻子的最佳方法是什么?这些都是我自己遇到的问题,我相信你们中的许多人也有。本指南将告诉您有关自信密封新木制项目的所有信息! 我可以密封木材填料吗? 是的,您可以密封木材填料。但是,最好用防水木腻子密封木材填料。为此,您需要将腻子涂在填料顶部,并让…

    2023-05-03
    5.8K00
  • 半永久性脱模剂是否可以与蜡或pva搭配使用?

    可以,但不建议,担心兼容问题。 对于部件脱模,半永久性脱模剂可替代任何其他类型的脱模材料,因此您无需再使用蜡或 PVA 等其他任何东西。脱模剂的正常使用方法是直接在干净的模具上多次涂抹,然后就可以使用模具了。它是半永久性的,因此您无需每次都重新涂抹。

    2022-10-18
    5.8K00
  • 泡沫轮廓板好计算树脂吃胶量吗?

    说实话,这的确不好计算。 虽然泡沫轮廓板多为闭孔泡沫,理论上不消耗树脂胶,可以通过开槽宽度、深度及开孔的情况,来计算大致的吃胶量。 显而易见的道理,轮廓板应用在弧面上之后,树脂量将不会再一致,加上客户的产品不可能是雷同的,所以实际的树脂吃胶量是需要实测的。

    2019-12-11
    8.3K00
  • 玻璃钢车壳对于车辆的安全性有什么具体影响?

    玻璃钢车壳对车辆的安全性有以下具体影响: 抗冲击能力:玻璃钢具有优异的强度和刚度,能够有效吸收和分散冲击能量。在发生碰撞或撞击时,玻璃钢车壳能够提供较好的保护,减少车辆变形和乘员受伤的风险。 结构强度:玻璃钢车壳具有较高的抗拉强度和抗弯刚度,能够增加整个车身的结构强度。这有助于防止车身变形和破裂,提高车辆在事故中的抗冲击能力和乘员保护水平。 耐腐蚀性:玻璃钢…

    2023-09-27
    7.7K00
  • 如何去除胶粘剂?

    要去除皮肤上的粘合剂,请用温肥皂水清洗受影响的区域(可能需要多次涂抹)。轻轻剥离皮肤时要非常小心,就像从皮肤上取下绷带一样;拉开皮肤可能会撕裂它。丙酮也能有效去除皮肤上的强力胶。通常在家用洗甲水中发现,在棉签的末端取少量直接涂在胶水上,应该可以溶解粘合剂而不损伤皮肤。小心——纯丙酮会使多种织物褪色,并会损坏层压木的饰面。纯丙酮会使皮肤脱水;使用后用肥皂和水清…

    2022-12-27
    7.0K00
  • 材料断裂的方式和原因

    对于工程师和设计师来说,了解材料断裂背后的机制以确保所选材料在给定环境中发挥预期作用至关重要。

    2023-04-21
    7.7K00

发表回复

登录后才能评论
分享本页
返回顶部