关于环氧树脂的一切 – 特性和用途

关于环氧树脂的一切 - 特性和用途

环氧 (EP) 树脂是热固性聚合物——这意味着它们从液态以改变的形式固化,并且不能以热塑性塑料的方式重新熔化。由于这个原因,热塑性塑料通常是可回收的,而热固性塑料通常不是。其他热固性材料包括聚酯、聚氨酯、三聚氰胺和酚醛树脂。有关这些热固性塑料和其他热塑性塑料的信息,请参阅我们的树脂类型指南。

特性

环氧树脂可以认为包括纯环氧树脂、热固性聚酯树脂和乙烯基酯树脂,尽管聚酯热固性塑料确实是一个独立的物种。纯环氧树脂通常作为两种成分(一种树脂和一种硬化剂,通常是一种胺)以相等或完全成比例(化学计量)的比例混合,以生产一种固化缓慢且几乎没有收缩的材料。热固性聚酯和乙烯基酯树脂在与催化剂(通常是 MEKP 或过氧化甲乙酮)混合时也会通过放热反应固化。催化剂的添加比例比环氧硬化剂小得多,通常每盎司树脂添加几滴。可以通过添加更多或更少的催化剂来调整固化时间——这与纯环氧树脂的情况不同,在纯环氧树脂中必须遵循正确的比例,否则材料将无法固化。与纯环氧树脂相比,热固性聚酯固化非常迅速,并在此过程中产生大量热量。结合聚酯和环氧树脂以增加强度。  纯环氧树脂的固化速率可以通过使用不同的硬化剂来提高或降低,但最终使树脂硬化的是热量。一些树脂/纤维组合,称为预浸料,需要冷藏预浸渍纤维直到使用,此时材料暴露在室温下并开始固化。树脂由主要制造商生产,然后大量出售给为特定应用生产特种化合物的配方设计师。

应用

环氧树脂可单独使用或与玻璃、碳或其他增强纤维(芳纶)结合使用,以制造从船体到电气元件的各种产品。它们在建筑行业中用于将螺栓和其他硬件固定到混凝土墙、天花板和地板上。它们用作灌封化合物、密封剂和密封剂。它们用作涂料、粘合剂等。环氧树脂在结构应用中的一个优点是与金属相比,它们本质上是耐腐蚀的。聚酯树脂是玻璃纤维增​​强塑料 (FRP) 船结构中的主要树脂,因为该树脂价格低廉,并且很容易粘附在聚酯基凝胶涂层上——光滑、有光泽的外壳表面。环氧树脂通常是修复此类船体损坏的选择,因为它具有卓越的强度和良好的机械附着力。但是,它不会化学粘附在聚酯上。聚酯树脂在空气中不会完全硬化,因此最后一层必须含有蜡或必须采用称为真空袋装的工艺以确保正确固化。因此,聚酯层压与树脂和饰面树脂,其中含有蜡。苯乙烯是聚酯和乙烯基酯中的化学物质,用作稀释剂,即使在固化后也能赋予玻璃纤维制品特有的气味。这些烟雾被认为对健康有害。乙烯基酯树脂是高质量船体工程以及需要一定结构强度或暴露于有机溶剂的环境的首选。尽管它们仍然容易吸水,但它们确实具有良好的热稳定性——但不如聚酯。它们与其他材料(例如纤维增强材料)的粘合效果不是特别好。纯环氧树脂的卓越强度使其成为飞机部件和结构强度至关重要的应用的选择。固化环氧树脂中苯环的形成使其强度几乎是乙烯基酯的三倍,此外还提高了耐水性。环氧树脂也更热稳定,不会吸收水分或随时间降解。环氧树脂以粉末形式提供,用于电机转子(用于槽绝缘)和外壳、电子元件等的高性能粉末涂层。制造高压绝缘体所需的电阻增加通常通过使用酸酐作为硬化剂而不是比胺。

物理属性

纯环氧树脂形成比聚酯或乙烯基酯树脂更复杂的结构,并且它们在不使用苯乙烯的情况下这样做,从而减少了它们对环境的影响。在讨论树脂的化学组成时,很多讨论都是针对分子的主链和交联。聚酯树脂被描述为不饱和的,具有许多双键。这解释了它们的低强度和亲水性。乙烯基酯树脂实现了更好的侧链交联,使其更能抵抗应力开裂并且受水分影响更小。环氧树脂依靠苯环的形成来完全交联侧链,赋予材料卓越的强度和防潮性。最常见的两种环氧树脂是二缩水甘油醚双酚A(DGEBA,苯酚和丙酮的反应产物)和二缩水甘油醚双酚F(DGEBF,苯酚和甲醛的反应产物),它们以液体、固体树脂、溶解树脂在溶剂、预浸料中,也作为与纤维增强结合的片材。

费用

聚酯树脂明显比环氧树脂便宜,而乙烯基酯由于在这些材料中包含环氧树脂而比聚酯更昂贵。同样,用树脂和增强布制造的片材和其他形状在环氧基层压板中往往比在聚酯基产品中更昂贵。例如,流行的玻璃环氧树脂产品G10比聚酯玻璃材料 GPO1 更昂贵。

耐化学性

环氧树脂对许多化学品具有相当好的耐受性,包括硫酸、丙酮、甲醇、氢氧化钠和有机酸,具体取决于配方。一般来说,由于 DGBEF 的交联密度更高,因此 DGBEF 在抵抗化学侵蚀方面比 DGBEA 表现更好。环氧树脂对紫外线敏感。

(101)
材料号的头像材料号特邀作者

猜您喜欢

  • 什么是定制树脂(定制树脂的用途有哪些)

    定制树脂是由树脂制造商为特定目的而专门设计的,它主要用于铸造和成型行业以及制造业的公司。树脂是一种天然存在的有机物质,主要从带有锥体的植物和树木中分泌出来。它具有高粘性,这意味着它很厚且具有粘性,就像糖蜜和蜂蜜一样厚且具有粘性。然后定制树脂以这些特性为基础,优化材料以在各种环境条件下使用。 也许最著名的定制树脂之一是环氧树脂。环氧树脂是一种通过将树脂与天然硬…

    2022-08-18
    9.8K00
  • 玻璃钢滑石粉怎么用?

    滑石粉作为填料在玻璃钢部件制造中是个不错的选择,不仅可以降低材料成本,同时对降低树脂收缩有很好的帮助。它的用法非常简单,在您添加促进剂之前,把滑石粉导入树脂中充分搅拌即可。 注意,不同比例的滑石粉加入后,你需要把促进剂和固化剂的比例同步提高到能确保树脂固化的量。这个需要您自己测试下,用纸杯先做几个凝胶测试。常规部件一般建议添加20-30%即可,太多的滑石粉加…

    2021-10-07
    6.7K00
  • 湿度和真空薄膜提示

    是否曾经直接从卷筒上取下真空薄膜样品并注意到它有多不柔韧或坚硬?在某些情况下,这部电影似乎不想在狭小的区域工作,或者在试图将其固定到装袋(粘性)胶带时变得麻烦?这里我们将讨论为什么会发生这种情况以及如何帮助提高未来项目的真空薄膜性能和柔韧性。 真空膜与湿度 复合材料中的大多数真空薄膜由称为尼龙的吸水材料制成。本质上,在较高湿度条件下,这些尼龙薄膜会吸收空气中…

    2022-11-20
    8.1K00
  • 复合材料夹层结构介绍

    复合材料夹层结构是一种层合复合材料的特殊形式,它是由不同材料相互粘接组合,通过利用各个组分的性能特点达到整个系统组成的结构优势。 简单的复合材料夹层结构由三部分组成:面板,芯材和胶接,通过胶接在前面两个组分之间传递载荷。 复合材料夹层结构能够达到的作用是通过让轻质、有一定厚度的芯材承受剪应力,同时将两个相对比较坚韧、薄的承载面板隔开。这和工字梁的肋板将上下缘…

    2024-11-17
    6.6K00
  • 在使用树脂之前应该让树脂静置吗?

    我不。一些工匠会这样做,以便在浇注树脂之前让气泡上升到表面。但是你的锅时间在流逝。这意味着在树脂开始固化之前您必须使用它的时间更短。我宁愿马上使用它,也不愿给自己更少的时间匆忙完成一个项目。

    2022-11-23
    8.1K00
  • 如何使用彩色环氧树脂作为木柜台的涂层?

    只要付出一点点努力和创造力,您就可以自己制作。事实上,如果您正在寻找深入的教程,请查看我们的DIY 环氧树脂台面——树脂台面的完美解决方案一文。 这里有一份快速指南和一种使用彩色环氧树脂的 DIY 方法,可帮助您开始制作这样的项目,而且只需花费一小部分成本! 如果您在家里、餐厅或办公室里有一张桌子,并且想用它来制作一件杰作或装饰品,这里有一份综合指南,介绍如…

    2023-04-26
    6.2K00
  • 墙面腻子后需要底漆吗?

    在您的墙壁看起来完美之前,必须完成许多层。有时这包括首先在您的表面上涂抹墙面腻子,或者可能是底漆。在处理墙面腻子和底漆以及涂料如何融入画面时会出现许多问题。如果您不能确保在正确的地方使用了正确的物质,您可能会后悔并重做整个油漆工作。 涂完墙面腻子后就不需要底漆了。底漆用于确保油漆具有正确附着的稳定基础。具有墙面腻子的表面已经提供了适合涂漆的表面,因此在涂漆前…

    2022-12-15
    6.3K00
  • 何判断脱模剂是否需要重新涂覆?

    判断脱模剂是否需要重新涂覆通常需要考虑以下几个因素: 请注意,这些仅是一些常见的指标和经验判断,并不是绝对准确的方法。最好的方式是根据实际使用情况和模具性能变化来判断是否需要重新涂覆脱模剂。如果你有疑问,可以咨询脱模剂制造商或专业人士,根据他们的建议来确定最佳的涂覆时间和频率。

    2023-08-25
    4.3K00
  • 多少碳纤维能挡住一颗子弹?

    碳纤维的能力来阻挡子弹取决于多个因素,包括碳纤维的厚度、密度、层叠方式、质量和子弹的类型、速度以及击中的角度等。因此,很难给出一个具体的数字。 一般而言,碳纤维具有较高的强度和刚度,可以在一定程度上提供防弹保护。碳纤维复合材料通常被广泛应用于防弹盾、防弹板、防弹衣等防护装备中,以提供对弹片和较小口径子弹的防护。 然而,当面对高速、高能量的子弹,尤其是大口径子…

    2022-11-09
    10.1K00
  • 玻璃钢是玻璃纤维吗

    玻璃钢(Glass Reinforced Plastic,GRP)实际上是由玻璃纤维和热固性树脂组成的复合材料,而不是纯粹的玻璃纤维。 玻璃钢通常使用玻璃纤维增强材料,这些玻璃纤维可以以纱线、布料或纤维状的形式存在。这些玻璃纤维与树脂(通常是聚酯树脂或环氧树脂)结合,形成了坚固且具有优异性能的玻璃钢材料。 树脂起到粘合剂的作用,将玻璃纤维固定在一起,并提供保…

    2023-11-29
    5.7K00

发表回复

登录后才能评论
分享本页
返回顶部