树脂添加剂类型和说明

树脂添加剂类型和说明

树脂是复合材料行业的独特工具,用于将其他材料组合在一起,即复合材料的胶水。这使得加入其中的添加剂变得更加有趣,因为进入树脂的树脂添加剂解决了当今世界上无数的问题。添加剂通常用于改性树脂体系以达到增稠目的并增强机械、热甚至电性能。一些添加剂会改变树脂的机械性能,从而增强其适应二次粘合、垂直应用、间隙填充、泡罩修复、锉削、整流罩或注射等任务的能力。许多这些添加剂通过控制普通层压树脂的粘度起作用,而一些添加剂则为树脂添加不同程度的增强以用于结构应用。基本上,就像使用添加剂特性作为树脂本身的复合材料作为短增强材料一样。可以设计添加剂特性以提供更好的整体部分取决于需要。

在大多数复合材料应用中,树脂的粘度由树脂与放入混合物中的特定填料的比率来控制或确定。更少的填料和更多的环氧树脂将产生更低的“流动”粘度产品。然而,当添加额外的填料时,环氧树脂会变得更厚,如某些触变糊剂所见。所有这些都取决于所使用的添加剂和树脂。混合这些添加剂的重要性不一定是完美的混合比例,而是为了达到所需工作或应用的特定粘度或厚度。许多可用的产品只是针对特定工作销售的各种类型添加剂的预先确定的混合物。然而,制造其中一些产品而不是直接购买它们可能更便宜、更可行。

为简单起见,有几种不同的粘度可以完成手头的任务。为工作获得适当的稠度、厚度或粘度将使其更容易应用于各种基材并实现最佳粘合性能。为了便于参考,请使用可比较的产品稠度来描述粘度。

牧场调料与蜂蜜稠度:通过购买较厚的树脂或通过最少量的添加剂(如气相二氧化硅或微珠)来实现。这种一致性实现了更容易的滚动能力,适用于层压或小填充孔。

番茄酱稠度:稍厚,用于将平面、水平或类似(紧密)配合表面粘合在一起。也用于填充孔的应用,非常适合需要使用注射器注射到特定位置时。

石膏稠度:在与垂直表面粘合的应用中更厚,如触变树脂。这种稠度最适用于修复沿垂直壁的复合材料表面,其中较薄的稠度会简单地用完。这也是在表面间隙明显很小的地方进行粘合的一种选择,也可以将各种硬件粘合到位,并且可以很好地填充间隙。

花生酱稠度:添加更多增稠剂后,这种稠度将保持在垂直表面上,并广泛用于填充和整流罩化合物。这种一致性在实现与不均匀配合表面的粘合的能力方面也受到高度重视,并且与间隙填充效果很好。

虽然许多可用的可选添加剂在与树脂混合时可以达到所需的粘度,但某些类型的添加剂甚至多种添加剂的混合物可以用于最佳性能。这些添加剂的性能取决于它们的大小和分子组成。从微米、纳米、毫米到更小,最终用途是填料或添加剂,几乎是无穷无尽的。

填料

气相二氧化硅(又名 Cabosil)是一种用途极为广泛的环氧树脂体系增稠剂/添加剂。由于其高度亲水性和易溶解性,它被用于全球范围内的产品,包括复合材料、油漆、水甚至食品工业。气相二氧化硅比灰尘更细,是一种纳米级尺寸的材料。二氧化硅的低密度材料具有高强度,同时提供快速增稠特性。气相二氧化硅是一种小颗粒物质,吸入可能有害。强烈建议在使用这种材料时戴上口罩或进行足够的排气通风。

优点:用途极为广泛,可用作单一添加剂或与其他材料混合物作为增稠剂,在所有上述稠度下均可使用。非常快速的填充剂,在适当的稠度下具有出色的触变性。

缺点:作为添加剂,可能会使打磨更加困难。最好与其他添加剂混合物一起用作增稠剂。

玻璃/塑料微球与环氧树脂广泛混合以提供发光化合物。这些微球是中空的,具有小的气孔,使其成为理想的轻质填料和整流罩添加剂。与气相法二氧化硅相比,这种添加剂的尺寸更大,但增稠程度不如气相法二氧化硅。

优点:易于打磨且重量轻,非常适合整流罩

缺点:单独与环氧树脂一起使用时,材料不能很好地粘附在垂直表面上。对于垂直表面整流罩,将微球与树脂以约 1:1 的比例混合,加入少量气相二氧化硅使混合物变稠,直到它保持在垂直表面上。(想想石膏稠度)这种方法仍然可以提供易于打磨的表面。

树脂增强

考虑到其他产品,用作树脂添加剂的碳纤维纳米管对于复合材料来说相对较新。碳纳米管非常小,最出名的是它是人类已知的最坚固的材料之一,它是圆柱形的石墨烯。当与环氧树脂(按体积计 4-6%)混合时,它可以产生非常适合铸件和表面涂层的增强树脂。细长的碳管是一种很好的表面涂层添加剂,因为纳米管比单独的树脂更好地将能量传递给增强材料。从这种独特材料的特性进入最终使用的产品中,还有很多东西需要学习。

优势:表面磨损,增加铸件和表面涂层的耐用性,更好的能量传递,导致更坚韧的复合层压板

缺点:难以在传统复合层压中使用

玻璃微纤维由生产织物或其他各种玻璃纤维材料的“剩余物”制成。不是将废玻璃纤维扔掉,而是根据需要将其切成各种尺寸以供使用。留下来并不会降低它的价值,玻璃纤维微纤维提供比单独的树脂、气相二氧化硅或微球添加剂更强的机械粘合力。“玻璃微纤维”被精细切割成直径约 2 微米的微米尺寸,基本上是最小的玻璃尺寸,可作为树脂添加剂提供任何实质性强度。玻璃微纤维是很好的树脂添加剂,用于一般孔填充、表面修复和二次粘合,如配合表面粘合。

优点:提供比木材填料、气相二氧化硅或微球等产品更高的机械性能。

缺点:更难使用,因为稠度与流动的果冻相当,一些经验有助于处理这种材料。

研磨碳纤维 (MCF)的生产方式与玻璃微纤维类似,长度在 80-100 微米之间。即使在树脂中的少量混合物 (~5%) 中使用时,它也会显着提高树脂的机械性能。由于 CF 的低热膨胀,给定树脂的热性能明显提高。MCFs 也可以被设计来控制表面的电导率。它通常用于增加各种塑料性能,以及提高工具和模具的热性能。MCF 也以相同的方式用于一般孔修复、表面缺陷和二次粘合。注意:混合后,树脂的颜色会变深,这可能会影响所需的表面光洁度。

优点:添加剂在稳定性、韧性、模量和强度方面比玻璃微纤维具有更好的材料性能。可用于进一步增强树脂的热和电性能。

缺点:在较高的混合比下可能难以使用,在使用前研究适当的混合比以确保达到手头任务所需的树脂性能。

切碎的材料

短切玻璃纤维的长度比树脂增强的铣削版本长得多。这就是为什么它在用作树脂添加剂时能显着提高材料性能的原因之一。提供不同的长度,通常从 1 英寸到 1 英寸不等,短切玻璃纤维添加剂可提高树脂的抗压强度和抗拉强度。此应用程序非常适合填充较大的孔和二次粘合,但也可用于在零件的难以层压的区域添加加固。一般混合比从约 1 份短切玻璃纤维到 15 份树脂开始,不要忘记,可以将气相二氧化硅添加到混合物中以提高树脂的处理特性。

优势:为大量复合材料应用提供高抗拉和抗压强度的廉价解决方案。不会像碳产品那样改变导电性能。可以使用各种颜色的玻璃纤维来匹配所需的表面。

缺点:它的湿毛球稠度使它与其他任何可以定期使用的东西都有点不同。这可能是一个挑战,但给它几批就可以有效地使用它。可能会导致产生不均匀的表面光洁度,因此可能需要进行额外的工作才能达到所需的表面光洁度。短切 FG 不如短切碳纤维强。

短切碳纤维长度为 3-10 毫米可以增加大量的粘合强度,而对重量几乎没有影响。当用作树脂添加剂时,它可以制造出一种具有绝对最高强度特性的其他添加剂,甚至可以与焊接实践相媲美。这些短切碳纤维补充了碳纤维的最佳用途,增加了强度和刚度。当用作树脂添加剂时,它只是以更多的液体形式使用。它相对便宜,因为它可以以小比例混合,从而获得所需的效果。将其用作树脂添加剂在应用中比一般复合材料层压或粘合更进一步。短切碳纤维的刚度使其成为混凝土修复和热塑性塑料压缩成型的良好选择。

优势:可用于树脂的最强添加剂,最终用途广泛,用途广泛

缺点:难以使用,因为它与小碳纤维混合时的稠度与与水混合的毛球相当,只是更粘。像短切
玻璃纤维一样,它的表面光洁度可能会有些不足。

化学增强添加剂粉末

似乎有无数种化学粉末可以添加到环氧树脂中,以增强或专门化树脂以促进最终产品所需的特性。添加剂粉末远远不仅仅是改变给定树脂的颜色。树脂添加剂的特性可以决定给定树脂是导电的还是绝缘的。有一些粉末添加剂可以改变环氧树脂的导热性。这些粉末最终提供了将环氧树脂设计成所需性能的廉价方法。几种不同的粉末可以与树脂混合以促进所需的特性。许多添加剂还促进抗紫外线。下面这个小清单的添加剂划伤了一些其他可用添加剂的表面及其与树脂混合时的用途。

铜 (Cu) 粉末:用于增强环氧树脂导热性能的添加剂。在分子水平上,铜粉具有高表面积,使其成为散热的理想选择。这可能会导致树脂能够承受更高的温度。氮化铝 (AIN) 粉末:促进电绝缘性能和导热性增强的添加剂

银 (Ag) 粉: 促进导电性的添加剂

石墨粉:促进导电性和抗紫外线性的添加剂

铝 (Al) 粉末:添加剂增强损伤/耐磨性和抗紫外线性,防止树脂分解或失效

氮化硼 (BN) 粉末:当添加到环氧树脂中时,它可以制造出一种廉价且可模塑的低摩擦表面,可与 HDPE 塑料或特氟龙相媲美

最佳实践

  • 始终预混合环氧树脂。在使用任何添加剂之前将其完全混合
  • 首先使用少量缓慢混合添加剂,以达到所需的性能。一开始添加的添加剂少,多加容易混合,不那么容易取出。
  • 大多数添加剂比重新涂抹更容易打磨,始终确保有足够多的树脂和添加剂混合进入或进入零件/修复表面。
  • 在使用较稠的混合物时,在某些应用中使用粉化管可能会使生活更轻松。实现简单应用的更便宜或更快的选择是通过使用塑料三明治袋,将增稠的环氧树脂放入袋中,在其中一个角处切开一条缝,然后将树脂涂在所需的表面上,类似于涂上蛋糕糖霜.
  • 通过使用特定半径来实现所需的圆角,创建更具视觉吸引力的接合面。使用示例包括半刚性卡片或冰棒棒(等)以实现特定的所需半径。
(24)

猜您喜欢

  • 丙酮和苯甲醛的区别

    什么是丙酮? 丙酮(二甲基酮、丙酮)是一种化合物,是一种无色、高度易燃、易挥发的液体,具有特殊气味。它是最简单的酮。 丙酮的化学式为C 3 H 6 O,分子量为58.08 g/mol。 丙酮蒸气比空气重,它们相对于空气的密度为 2.0(空气 = 1)。丙酮的密度低于水,其相对于水的密度为 0.8(水 = 1)。 在推荐…

    2022-12-27
    7.2K00
  • 如何正确使用火炬消除环氧树脂气泡?

    当您安装自己的环氧树脂台面时,了解如何正确使用丙烷喷灯非常重要。倒出环氧树脂后,可能会有一些气泡,这些气泡是在树脂和硬化剂混合时混入的。为了从台面表面去除这些气泡,我们建议使用丙烷喷灯。喷灯的热量有助于平整环氧树脂并释放气泡。 正确去除环氧树脂台面上的气泡最重要的第一点是使用正确的工具。 热风枪与丙烷喷灯 许多不敢使用喷灯的DIY爱好者会询问我们是否有其他替…

    2024-11-07
    4.8K00
  • 你如何填补一大块缺失的木头?

    我不想隐瞒我最喜欢的一件家具不见了一大块的事实。我也不希望它明显丢失。在本文中,我将向您展示如何填充漏洞并使其看起来像什么都没发生过。 你如何填充损坏的木材? 你如何在木头上填充深凿? 如果您缺少一块木头,第一步是用木材填充物填充它。您应该使用腻子刀涂抹填充物并将其抚平,然后使用大腻子刀(或类似工具)擦掉残留的任何多余。 表面光滑后,用纸巾或抹布擦去多余的材…

    2023-05-01
    6.0K00
  • 什么是硅胶软管?

    术语硅胶软管是指由各种配方的硅橡胶制成的柔性管或管道系列。这些产品展现了有机硅材料的独特特性,包括宽泛的工作温度范围、柔韧性、稳定性和对多种化学品的耐受性。硅胶软管可以与编织增强纤维层压以用于加压应用,或保持平整以用于标称压力应用。硅胶软管用于医疗、汽车、化学和食品加工行业中需要惰性、耐温产品的各种应用。软管也可以生产成各种特定应用的型材或连续的卷制长度,并…

    2023-02-26
    3.6K00
  • 可以喷涂环氧树脂吗?

    很多人想知道是否可以喷涂环氧树脂。答案是肯定的!可以喷涂环氧树脂,但使用此方法时应采取一些预防措施。在将环氧树脂喷涂到您的车辆或其他表面之前,您需要了解一些事项。目录 如何喷涂环氧树脂? 环氧树脂喷涂是一种常用的表面涂层方法。该过程包括将环氧树脂添加到气溶胶罐中并将其喷涂到所需的表面上。然而,为了达到专业的效果,您需要在完善您的技术之前进行一些练习。本指南将…

    2023-01-30
    8.8K00
  • 车库地坪涂料的类型

    在地板涂料方面有很多选择,每一种都提供不同的功能。选择合适的将取决于您要寻找的东西。您只是想要一层油漆还是想要更耐用?以下是您可能要考虑的一些车库地板涂料。 涂料:乳胶或单组分环氧涂料 乳胶漆是车库地板涂料的基本选择,并提供可以防止灰尘进入的油漆外观。但是,您不会有任何耐久性,只有在不经常使用表面的情况下才可能是个好主意。环氧地坪漆是更耐用的选择,因为它是油…

    2022-12-13
    5.8K00
  • 如果特氟龙以不粘特性着称,那么制造商如何在其上粘贴粘合剂?

    与所有粘合工艺一样,关键是表面处理。像聚四氟乙烯这样的材料可能具有“不粘”特性,但当其表面经过化学蚀刻时,粘合剂就可以正常工作。使用碳氟化合物或钠和萘的四氢呋喃溶液。此外 – 等离子蚀刻或电晕放电蚀刻产生良好的效果。

    2023-02-19
    2.8K00
  • 什么是泡沫胶?

    泡沫粘合剂是一种聚氨酯基粘合剂,用于建筑工程,适用于许多常见的建筑材料。这些粘合剂通常用于固定屋顶,也可用于其他材料,例如干墙和胶合板。它们在材料之间提供防水、牢固的粘合,并以管状或喷雾形式购买。它们可从许多建筑材料供应商处获得,并且由于易于应用和由此产生的粘合强度而受到许多专业人士的青睐。 聚氨酯是一种耐用的材料。它可以抵抗天气、温度波动、油、脂肪甚至汽油…

    2022-11-12
    10.2K00
  • 粘合碳纤维的技巧

    如果孔特别大,可以通过插入新的碳层来修复。在此之前,应仔细磨掉旧层。 干净的 准备要粘合的区域 重工

    2022-12-10
    5.9K00
  • 环氧台面看起来便宜吗?

    环氧树脂台面不仅仅是您的台面。这是一个设计厨房确切外观和感觉的机会。您可以将任何类型的设计元素融入您的台面,包括那些会给您的客人留下深刻印象甚至增加您房屋价值的元素。 环氧台面建立在高密度聚氨酯(HDP)的基材上。HDP材料适合作为环氧树脂的基础,因为它不吸水,这意味着它不会吸收任何与之接触的液体。 这意味着如果您在烹饪时将某些东西洒在表面上,清洁将很简单,…

    2023-06-01
    4.0K00

发表回复

登录后才能评论
分享本页
返回顶部